Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The solution structure of the FATC domain of the protein kinase target of rapamycin suggests a role for redox-dependent structural and cellular stability.

Identifieur interne : 001808 ( Main/Exploration ); précédent : 001807; suivant : 001809

The solution structure of the FATC domain of the protein kinase target of rapamycin suggests a role for redox-dependent structural and cellular stability.

Auteurs : Sonja A. Dames [Suisse] ; José M. Mulet ; Klara Rathgeb-Szabo ; Michael N. Hall ; Stephan Grzesiek

Source :

RBID : pubmed:15772072

Descripteurs français

English descriptors

Abstract

The target of rapamycin (TOR) is a highly conserved Ser/Thr kinase that plays a central role in the control of cellular growth. TOR has a characteristic multidomain structure. Only the kinase domain has catalytic function; the other domains are assumed to mediate interactions with TOR substrates and regulators. Except for the rapamycin-binding domain, there are no high-resolution structural data available for TOR. Here, we present a structural, biophysical, and mutagenesis study of the extremely conserved COOH-terminal FATC domain. The importance of this domain for TOR function has been highlighted in several publications. We show that the FATC domain, in its oxidized form, exhibits a novel structural motif consisting of an alpha-helix and a COOH-terminal disulfide-bonded loop between two completely conserved cysteine residues. Upon reduction, the flexibility of the loop region increases dramatically. The structural data, the redox potential of the disulfide bridge, and the biochemical data of a cysteine to serine mutant indicate that the intracellular redox potential can affect the cellular amount of the TOR protein via the FATC domain. Because the amount of TOR mRNA is not changed, the redox state of the FATC disulfide bond is probably influencing the degradation of TOR.

DOI: 10.1074/jbc.M501116200
PubMed: 15772072


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The solution structure of the FATC domain of the protein kinase target of rapamycin suggests a role for redox-dependent structural and cellular stability.</title>
<author>
<name sortKey="Dames, Sonja A" sort="Dames, Sonja A" uniqKey="Dames S" first="Sonja A" last="Dames">Sonja A. Dames</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Structural Biology, Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland. sonja.dames@unibas.ch</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Department of Structural Biology, Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel</wicri:regionArea>
<wicri:noRegion>4056 Basel</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mulet, Jose M" sort="Mulet, Jose M" uniqKey="Mulet J" first="José M" last="Mulet">José M. Mulet</name>
</author>
<author>
<name sortKey="Rathgeb Szabo, Klara" sort="Rathgeb Szabo, Klara" uniqKey="Rathgeb Szabo K" first="Klara" last="Rathgeb-Szabo">Klara Rathgeb-Szabo</name>
</author>
<author>
<name sortKey="Hall, Michael N" sort="Hall, Michael N" uniqKey="Hall M" first="Michael N" last="Hall">Michael N. Hall</name>
</author>
<author>
<name sortKey="Grzesiek, Stephan" sort="Grzesiek, Stephan" uniqKey="Grzesiek S" first="Stephan" last="Grzesiek">Stephan Grzesiek</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2005">2005</date>
<idno type="RBID">pubmed:15772072</idno>
<idno type="pmid">15772072</idno>
<idno type="doi">10.1074/jbc.M501116200</idno>
<idno type="wicri:Area/Main/Corpus">001846</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001846</idno>
<idno type="wicri:Area/Main/Curation">001846</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001846</idno>
<idno type="wicri:Area/Main/Exploration">001846</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The solution structure of the FATC domain of the protein kinase target of rapamycin suggests a role for redox-dependent structural and cellular stability.</title>
<author>
<name sortKey="Dames, Sonja A" sort="Dames, Sonja A" uniqKey="Dames S" first="Sonja A" last="Dames">Sonja A. Dames</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Structural Biology, Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland. sonja.dames@unibas.ch</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Department of Structural Biology, Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel</wicri:regionArea>
<wicri:noRegion>4056 Basel</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mulet, Jose M" sort="Mulet, Jose M" uniqKey="Mulet J" first="José M" last="Mulet">José M. Mulet</name>
</author>
<author>
<name sortKey="Rathgeb Szabo, Klara" sort="Rathgeb Szabo, Klara" uniqKey="Rathgeb Szabo K" first="Klara" last="Rathgeb-Szabo">Klara Rathgeb-Szabo</name>
</author>
<author>
<name sortKey="Hall, Michael N" sort="Hall, Michael N" uniqKey="Hall M" first="Michael N" last="Hall">Michael N. Hall</name>
</author>
<author>
<name sortKey="Grzesiek, Stephan" sort="Grzesiek, Stephan" uniqKey="Grzesiek S" first="Stephan" last="Grzesiek">Stephan Grzesiek</name>
</author>
</analytic>
<series>
<title level="j">The Journal of biological chemistry</title>
<idno type="ISSN">0021-9258</idno>
<imprint>
<date when="2005" type="published">2005</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence (MeSH)</term>
<term>Animals (MeSH)</term>
<term>Binding Sites (MeSH)</term>
<term>Conserved Sequence (MeSH)</term>
<term>Cysteine (chemistry)</term>
<term>Disulfides (chemistry)</term>
<term>Drug Stability (MeSH)</term>
<term>Magnetic Resonance Spectroscopy (MeSH)</term>
<term>Models, Molecular (MeSH)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Mutagenesis (MeSH)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Peptide Fragments (chemistry)</term>
<term>Phosphatidylinositol 3-Kinases (chemistry)</term>
<term>Phosphatidylinositol 3-Kinases (genetics)</term>
<term>Phosphotransferases (Alcohol Group Acceptor) (chemistry)</term>
<term>Phosphotransferases (Alcohol Group Acceptor) (genetics)</term>
<term>Protein Structure, Secondary (MeSH)</term>
<term>Recombinant Fusion Proteins (MeSH)</term>
<term>Saccharomyces cerevisiae (enzymology)</term>
<term>Saccharomyces cerevisiae Proteins (chemistry)</term>
<term>Saccharomyces cerevisiae Proteins (genetics)</term>
<term>Sequence Alignment (MeSH)</term>
<term>Serine (MeSH)</term>
<term>Sirolimus (metabolism)</term>
<term>Sirolimus (pharmacology)</term>
<term>Structure-Activity Relationship (MeSH)</term>
<term>Temperature (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Alignement de séquences (MeSH)</term>
<term>Animaux (MeSH)</term>
<term>Cystéine (composition chimique)</term>
<term>Disulfures (composition chimique)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Fragments peptidiques (composition chimique)</term>
<term>Modèles moléculaires (MeSH)</term>
<term>Mutagenèse (MeSH)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Phosphatidylinositol 3-kinases (composition chimique)</term>
<term>Phosphatidylinositol 3-kinases (génétique)</term>
<term>Phosphotransferases (Alcohol Group Acceptor) (composition chimique)</term>
<term>Phosphotransferases (Alcohol Group Acceptor) (génétique)</term>
<term>Protéines de Saccharomyces cerevisiae (composition chimique)</term>
<term>Protéines de Saccharomyces cerevisiae (génétique)</term>
<term>Protéines de fusion recombinantes (MeSH)</term>
<term>Relation structure-activité (MeSH)</term>
<term>Saccharomyces cerevisiae (enzymologie)</term>
<term>Sirolimus (métabolisme)</term>
<term>Sirolimus (pharmacologie)</term>
<term>Sites de fixation (MeSH)</term>
<term>Spectroscopie par résonance magnétique (MeSH)</term>
<term>Stabilité de médicament (MeSH)</term>
<term>Structure secondaire des protéines (MeSH)</term>
<term>Séquence conservée (MeSH)</term>
<term>Séquence d'acides aminés (MeSH)</term>
<term>Sérine (MeSH)</term>
<term>Température (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Cysteine</term>
<term>Disulfides</term>
<term>Peptide Fragments</term>
<term>Phosphatidylinositol 3-Kinases</term>
<term>Phosphotransferases (Alcohol Group Acceptor)</term>
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Phosphatidylinositol 3-Kinases</term>
<term>Phosphotransferases (Alcohol Group Acceptor)</term>
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Cystéine</term>
<term>Disulfures</term>
<term>Fragments peptidiques</term>
<term>Phosphatidylinositol 3-kinases</term>
<term>Phosphotransferases (Alcohol Group Acceptor)</term>
<term>Protéines de Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Phosphatidylinositol 3-kinases</term>
<term>Phosphotransferases (Alcohol Group Acceptor)</term>
<term>Protéines de Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Animals</term>
<term>Binding Sites</term>
<term>Conserved Sequence</term>
<term>Drug Stability</term>
<term>Magnetic Resonance Spectroscopy</term>
<term>Models, Molecular</term>
<term>Molecular Sequence Data</term>
<term>Mutagenesis</term>
<term>Oxidation-Reduction</term>
<term>Protein Structure, Secondary</term>
<term>Recombinant Fusion Proteins</term>
<term>Sequence Alignment</term>
<term>Serine</term>
<term>Structure-Activity Relationship</term>
<term>Temperature</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Alignement de séquences</term>
<term>Animaux</term>
<term>Données de séquences moléculaires</term>
<term>Modèles moléculaires</term>
<term>Mutagenèse</term>
<term>Oxydoréduction</term>
<term>Protéines de fusion recombinantes</term>
<term>Relation structure-activité</term>
<term>Sites de fixation</term>
<term>Spectroscopie par résonance magnétique</term>
<term>Stabilité de médicament</term>
<term>Structure secondaire des protéines</term>
<term>Séquence conservée</term>
<term>Séquence d'acides aminés</term>
<term>Sérine</term>
<term>Température</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The target of rapamycin (TOR) is a highly conserved Ser/Thr kinase that plays a central role in the control of cellular growth. TOR has a characteristic multidomain structure. Only the kinase domain has catalytic function; the other domains are assumed to mediate interactions with TOR substrates and regulators. Except for the rapamycin-binding domain, there are no high-resolution structural data available for TOR. Here, we present a structural, biophysical, and mutagenesis study of the extremely conserved COOH-terminal FATC domain. The importance of this domain for TOR function has been highlighted in several publications. We show that the FATC domain, in its oxidized form, exhibits a novel structural motif consisting of an alpha-helix and a COOH-terminal disulfide-bonded loop between two completely conserved cysteine residues. Upon reduction, the flexibility of the loop region increases dramatically. The structural data, the redox potential of the disulfide bridge, and the biochemical data of a cysteine to serine mutant indicate that the intracellular redox potential can affect the cellular amount of the TOR protein via the FATC domain. Because the amount of TOR mRNA is not changed, the redox state of the FATC disulfide bond is probably influencing the degradation of TOR.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">15772072</PMID>
<DateCompleted>
<Year>2005</Year>
<Month>08</Month>
<Day>15</Day>
</DateCompleted>
<DateRevised>
<Year>2013</Year>
<Month>11</Month>
<Day>21</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0021-9258</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>280</Volume>
<Issue>21</Issue>
<PubDate>
<Year>2005</Year>
<Month>May</Month>
<Day>27</Day>
</PubDate>
</JournalIssue>
<Title>The Journal of biological chemistry</Title>
<ISOAbbreviation>J Biol Chem</ISOAbbreviation>
</Journal>
<ArticleTitle>The solution structure of the FATC domain of the protein kinase target of rapamycin suggests a role for redox-dependent structural and cellular stability.</ArticleTitle>
<Pagination>
<MedlinePgn>20558-64</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>The target of rapamycin (TOR) is a highly conserved Ser/Thr kinase that plays a central role in the control of cellular growth. TOR has a characteristic multidomain structure. Only the kinase domain has catalytic function; the other domains are assumed to mediate interactions with TOR substrates and regulators. Except for the rapamycin-binding domain, there are no high-resolution structural data available for TOR. Here, we present a structural, biophysical, and mutagenesis study of the extremely conserved COOH-terminal FATC domain. The importance of this domain for TOR function has been highlighted in several publications. We show that the FATC domain, in its oxidized form, exhibits a novel structural motif consisting of an alpha-helix and a COOH-terminal disulfide-bonded loop between two completely conserved cysteine residues. Upon reduction, the flexibility of the loop region increases dramatically. The structural data, the redox potential of the disulfide bridge, and the biochemical data of a cysteine to serine mutant indicate that the intracellular redox potential can affect the cellular amount of the TOR protein via the FATC domain. Because the amount of TOR mRNA is not changed, the redox state of the FATC disulfide bond is probably influencing the degradation of TOR.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Dames</LastName>
<ForeName>Sonja A</ForeName>
<Initials>SA</Initials>
<AffiliationInfo>
<Affiliation>Department of Structural Biology, Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland. sonja.dames@unibas.ch</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mulet</LastName>
<ForeName>José M</ForeName>
<Initials>JM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Rathgeb-Szabo</LastName>
<ForeName>Klara</ForeName>
<Initials>K</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hall</LastName>
<ForeName>Michael N</ForeName>
<Initials>MN</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Grzesiek</LastName>
<ForeName>Stephan</ForeName>
<Initials>S</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>PDB</DataBankName>
<AccessionNumberList>
<AccessionNumber>1W1N</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2005</Year>
<Month>03</Month>
<Day>16</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Biol Chem</MedlineTA>
<NlmUniqueID>2985121R</NlmUniqueID>
<ISSNLinking>0021-9258</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004220">Disulfides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010446">Peptide Fragments</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011993">Recombinant Fusion Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>452VLY9402</RegistryNumber>
<NameOfSubstance UI="D012694">Serine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.-</RegistryNumber>
<NameOfSubstance UI="D019869">Phosphatidylinositol 3-Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.-</RegistryNumber>
<NameOfSubstance UI="D017853">Phosphotransferases (Alcohol Group Acceptor)</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.137</RegistryNumber>
<NameOfSubstance UI="C083324">TOR1 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>K848JZ4886</RegistryNumber>
<NameOfSubstance UI="D003545">Cysteine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>W36ZG6FT64</RegistryNumber>
<NameOfSubstance UI="D020123">Sirolimus</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001665" MajorTopicYN="N">Binding Sites</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017124" MajorTopicYN="N">Conserved Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003545" MajorTopicYN="N">Cysteine</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004220" MajorTopicYN="N">Disulfides</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004355" MajorTopicYN="N">Drug Stability</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009682" MajorTopicYN="N">Magnetic Resonance Spectroscopy</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="N">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016296" MajorTopicYN="N">Mutagenesis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010446" MajorTopicYN="N">Peptide Fragments</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019869" MajorTopicYN="N">Phosphatidylinositol 3-Kinases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017853" MajorTopicYN="N">Phosphotransferases (Alcohol Group Acceptor)</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017433" MajorTopicYN="N">Protein Structure, Secondary</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011993" MajorTopicYN="N">Recombinant Fusion Proteins</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016415" MajorTopicYN="N">Sequence Alignment</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012694" MajorTopicYN="N">Serine</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020123" MajorTopicYN="N">Sirolimus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013329" MajorTopicYN="N">Structure-Activity Relationship</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013696" MajorTopicYN="N">Temperature</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2005</Year>
<Month>3</Month>
<Day>18</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2005</Year>
<Month>8</Month>
<Day>16</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2005</Year>
<Month>3</Month>
<Day>18</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">15772072</ArticleId>
<ArticleId IdType="pii">M501116200</ArticleId>
<ArticleId IdType="doi">10.1074/jbc.M501116200</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Suisse</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Grzesiek, Stephan" sort="Grzesiek, Stephan" uniqKey="Grzesiek S" first="Stephan" last="Grzesiek">Stephan Grzesiek</name>
<name sortKey="Hall, Michael N" sort="Hall, Michael N" uniqKey="Hall M" first="Michael N" last="Hall">Michael N. Hall</name>
<name sortKey="Mulet, Jose M" sort="Mulet, Jose M" uniqKey="Mulet J" first="José M" last="Mulet">José M. Mulet</name>
<name sortKey="Rathgeb Szabo, Klara" sort="Rathgeb Szabo, Klara" uniqKey="Rathgeb Szabo K" first="Klara" last="Rathgeb-Szabo">Klara Rathgeb-Szabo</name>
</noCountry>
<country name="Suisse">
<noRegion>
<name sortKey="Dames, Sonja A" sort="Dames, Sonja A" uniqKey="Dames S" first="Sonja A" last="Dames">Sonja A. Dames</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001808 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001808 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:15772072
   |texte=   The solution structure of the FATC domain of the protein kinase target of rapamycin suggests a role for redox-dependent structural and cellular stability.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:15772072" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020